

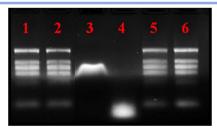
Helix Nuclease Terminator

Catalog Number: **HBRB001 -RX100** Storage: 25°C; Components: 100 ml

Description:

Helix Nuclease Terminator is a cutting-edge surface decontamination solution, expertly formulated to eliminate RNase and DNase contaminants on contact. Helix Nuclease Terminator is essential for maintaining a nuclease-free environment, which is crucial for both RNA and DNA work. Researchers can safeguard the integrity and success of their molecular biology experiments by using Helix Nuclease Terminator to maintain a nuclease-free workspace.

Key Features:


- Effective Removal: Completely eradicates DNase and RNase from glass and plastic surfaces.
- High Efficiency: Demonstrates full effectiveness in removing even high concentrations of RNase A.
- Versatile Use: Ideal for cleaning pipettors, work surfaces, and other laboratory equipment requiring an RNase-free environment.

Application for RNA Isolation:

Working with RNA demands stringent precautions to prevent RNase contamination, which can significantly compromise RNA yield and integrity during processes such as RNA purification and in vitro transcription. Even trace amounts of RNase can lead to RNA degradation, resulting in inconsistent outcomes in assays like RT-PCR, nuclease protection assays and Northern blotting.

Usage Instructions:

- 1. Spray Application: Apply Helix Nuclease Terminator Solution directly onto the surface to be decontaminated.
- 2. Rinse: Allow the solution to act on the surface for 30 seconds to 5 minutes. Wipe the surface using Kim wipes/lint-free tissue paper wetted with autoclaved or nuclease-free water to remove any residual solution.

The figure shows RNA integrity with and without Nuclease Terminator treatment.

Lane 1: RNA isolated using HelixZol.

Lane 2: RNA after being placed on solid support pretreated with Nuclease Terminator.

Lane 3: RNA after being placed on solid support pretreated with 50 µg of RNase A.

Lane 4: RNA after being placed on solid support pretreated with 50 µg of RNase A, followed by wiping the glass plate with DEPC water.

Lane 5: RNA after being placed on solid support pretreated with 50 µg of RNase A. The RNase-treated plate was then cleaned with Nuclease Terminator Solution before placing the RNA.

Lane 6: RNA after being placed on solid support pretreated with 50 µg of RNase A. The RNase-treated plate was then cleaned with Nuclease Terminator Solution and DEPC water before placing the RNA.